Skip to main content

Embedding API

Stima API provides the Embedding API for developers to convert text into vectors and find similar text through vector search.

Usage (Example in Python)

import http.client
import json

conn = http.client.HTTPSConnection("api.stima.tech")
payload = json.dumps({
"model": "text-embedding-3-large",
"input": "The food was delicious and the waiter..."
})
headers = {
'Authorization': 'Bearer <STIMA_API_KEY>',
'Content-Type': 'application/json'
}
conn.request("POST", "/v1/embeddings", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))

Parameters

  • model: The model to use, currently supports text-embedding-3-large, text-embedding-3-small, text-embedding-ada-002 from OpenAI and jina-embeddings-v3, jina-clip-v2, jina-colbert-v2, jina-embeddings-v2-base-code, jina-embeddings-v2-base-zh, jina-embeddings-v2-base-en from Jina AI.
  • input: The text to convert
  • STIMA_API_KEY: Your API key